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Synopsis
The stopping power of aluminium for 5-12 MeV protons and deuterons has been measured 

by a thermometric compensation technique working at liquid helium temperature. The experi
mental method is described and the standard deviation of the results is found to be 0.3 °/0. In 
order to obtain this accuracy one has to apply theoretical corrections for the influence of Coulomb 
scattering, x-rays and ô-rays. Other possible corrections are discussed, but are found to be 
negligible for this combination of projectiles, energies and target material. The results agree 
with published experimental results as well as with Bichsel’s semiempirical tables.
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I. Introduction

The measurement of energy losses and ranges of protons and deuterons 
is an old topic in atomic physics, and a vast amount of data has been 
collected during the years. Bichsel has recently tried to present a detailed 
comparison between experimental material and theory (Biciisel 1961, 1963, 
1964). Il turned out, however, that the accuracy of the existing data was 
not high enough to yield unambigous results for the so-called “shell-correc
tions” and there is thus a need for more accurate data. Until now methods 
utilizing nuclear instrumentation have been used and the best results ob
tained was 0.5°/0 for range (Biciisel et al. 1957, Biciisel 1958) and 1-2 °/0 
for stopping power measurements (Nielsen 1961). To obtain more accurate 
results it is either necessary to build expensive energy analysing systems or 
to use new principles. The latter has, e.g., been tried by Kalil et al. (1959) 
and Ziemer et al. (1959) who measured energy losses in thin foils directly 
by calorimetric methods. The accuracies obtained could compete with 
those of conventional techniques only in the special case of very low energy 
electrons. The idea to make a direct measurement of the energy loss has also 
been used in the present investigation. Our method utilizes a thermometric 
compensation technique working at liquid helium temperature, and avoids 
the conflict between target size and resolution of the analysing system. It 
is thus possible to measure stopping powers of thin metal foils accurately 
in spite of unavoidable inhomogenities in foil thicknesses.

The measurements were done at the tandem van de Graff laboratory of 
lhe Niels Bohr Institute, the University of Copenhagen. The projectiles were 
5-12 MeV protons and deuterons. As a target aluminium was first chosen 
since this material has often been used as a sort of standard for relative 
stopping power measurements.

1*
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II. Experimental Procedure
A. Energy Losses

A determination of stopping power from a measurement on a thin foil 
requires a determination of three different quantities: the energy of the in
coming particle, the energy loss in the foil, and the thickness of the foil. 
Since the measurement of energy and foil thickness only involves standard 
techniques we will first discuss the measurement of the energy loss.

The principle is shown in fig. 1. The target foil and a block thicker 
than the range of the projectiles are connected to a heat sink through thermal 
resistances Wf and Wb- The beam passes through the foil and is stopped 
in the block. It causes a heating of foil and block giving temperature rises 
measured with the thermometers and Kb- The beam is then switched olf, 
and electrical powers Pf and Pb are fed to heaters thermally connected to 
foil and block until the same temperature rises are obtained. A particle 
having energy Eo immediately in front of the foil will suffer an energy 
loss AE in the foil given by the relation

AE = Eo
Pf

Pf + Pb
(2.1)

The requirement for obtaining a good determination of the above power 
ratio is that the conditions corresponding to heating by the beam are well 
reproduced by the electrical heaters. This is fulfilled if both systems, foil 
and block, are isolated to the extent that they can only interact thermally 
with the heat sink, and that these interactions only take place through their 
thermal resistances. Especially should there be no mutual thermal inter
action between block and foil.

The actual experiment is performed with a liquid helium bath as heat 
sink. The system is placed in vacuum and surrounded by a thermal shield 
at liquid helium temperature. The low temperature guaranties that inter
actions by thermal radiation will be very small, and it is also easy to obtain 
such a good vacuum that heat transfer through the residual gas is negligible. 
Furthermore, the absolute sensitivity of thermometers is greater at lower 
temperatures so that a smaller temperature rise is necessary to obtain a 
given accuracy. This factor, small temperature rises, also reduces the radia
tion interactions. Finally, in order to make the system able to respond 
quickly to changes in beam current or electrical power, the thermal time 
constants of the two systems should be small. This is most easily obtained 
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at low temperatures, where heat capacities are small and thermal conduc
tivities high.

If the foil itself has poor heat conductivity, the center of the spot hit 
by the beam may become very hot, and thermal radiation will be important. 
Both to avoid this, and to keep the thermal time constants low, it is necessary 
to work with targets having good heat conductivity at liquid helium temper-

Figure 1. Diagram of stopping power measuring system. Wj and Wg are thermal resistances, 
Up and Rb thermometers, and Pf and Pb electrical heaters.

alures. This means that the method is only applicable to pure metals in its 
present form.

The measurements are made using a commercial liquid helium irradia
tion cryostat (Hofmann Inc.). The measuring equipment is fastened to the 
bottom of the cryostat as shown in lig. 2. The helium cryostat is cut open, 
and the radiation shields at liquid nitrogen and liquid helium temperature 
(77°K and 4.2°K) are not shown. Beneath the cryostat the target foil is seen. 
It is soldered to a frame of well annealed very pure copper, and the heater 
is wound around the frame near the soldering point. The frame is mechan
ically fastened to the cryostat by insulating pins, and the heat path is provided 
by a copper wire. The length and thickness of the copper wire, and thus the 
thermal resistance, may easily be varied. The thermometer is an ordinary 
0.1 Watt carbon resistor. The resistance of the thermometer is 68 Q at room 
temperature, 290 Q at 10°K and 850 Q at 4.2°K, giving enormous sensitivity 
in the lower temperature range. The thermometer is fastened near the end 
of the thermal resistance.

The stopping block is shown behind the foil. It is an aluminium case
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Figure 2. The set-up for stopping power measurements, showing the lower part of the helium 
Dewar (cut open), the measuring equipment, and the nitrogen temperature shield. A. Stopping 
block. B. Target foil. C. and D. Heaters. E. and F. Heat paths with resistances. G. Foil ther
mometer. H. Nitrogen temperature shield. I. Electrical connections laquered to the bottom of 
the helium Dewar. J. Copper edge to which helium temperature radiation shield is fastened. K. 
and L. Thermal connections to helium bath. Note that the electrical connections from the bot

tom of the Dewar to block and foil are not shown.

open in the side facing the foil. The opposite side, where the beam is stopped, 
is made from a 0.3 mm gold plate, this particular metal being chosen to 
reduce the influence of nuclear reactions. This shape has been chosen partly 
to ensure that particles have to be Coulomb scattered in the foil by more than 
n/2 to avoid hitting the block, and partly to ensure that most x-rays emitted 
from the gold surface are reabsorbed by the block and not by the foil. 
Healer, thermal resistance, and thermometer are placed in ways similar to 
those on the foil. The electrical connections to both heaters are made by 
superconducting Nb3Zr wire, which has small thermal conductivity. Further 
details of the construction are given by Andersen (1965) where the charac
teristics of the system are also discussed.
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The usable temperature range is determined by the thermometers. Their 
sensivity drops off nearly exponentially with increasing temperature, which 
means that the temperature increase should be kept reasonably low. We 
also need a fairly big temperature increase to be able to measure it accu
rately. These competing factors give the sensitivity of the system a broad 
maximum between 6 and 10°K. The temperature rise of each system can 
then be varied a factor of three without affecting the accuracy, meaning that 
power ratio variations within a factor of nine are permissible.

Il has, until now, been assumed that the intensity of the accelerator 
beam is stable, and that this defines one temperature rise for each of the 
systems. This is, unfortunately, not the case. Two temperature intervals 
rather than two temperatures are thus defined. The calibration with the 
electrical heaters should cover the same temperature intervals, and three 
calibration points are made for each system. Large variation in beam current 
will reduce the accuracy of the measurement and calibration, and variations 
larger than 10 °/0 are normally not accepted.

The temperatures of block and foil should follow the beam current 
variations reasonably well, and small time constants are thus very important 
for the method. The time constants are 3-7 seconds for the foil and 0.5-1.5 
seconds for the block, increasing with increasing temperature. This is satis
factory, although a smaller time constant for the foil would be advantageous.

The fluctuating temperatures are measured continuously and simultane
ously. This is done with Wheatstone bridges, one for each system, the bridges 
being set at suitable values in order to give signals varying around zero. 
The signals are amplified and fed into recorders. It is then possible to select 
corresponding points on the two recorder curves. The method used for the 
evaluation of energy losses from recorder readings will be described later.

The determination of the energy loss has been tested in different ways. 
Two of these tests will be described here. They are both concerned with 
the problem, whether we really measure all the heat dissipated in the foil 
and the block. (The problem whether all the dissipated energy appears as 
heat or not is treated later). The compensation technique may be erroneous 
either if there are radiation losses or if the heat dissipated by the beam does 
not choose the same heat paths to reach the reservoir as that supplied by 
the heaters. If either of these is the case, measurements with different beam 
intensities will yield different results. This has been tested with 6 MeV 
protons in aluminium. The result is shown in fig. 3. There is no trend in 
the results - all agree with each other within 0.1 °/0.

To check the internal consistency of the calibrations we have done
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Figure 3. Relative energy loss for 6 MeV protons in an aluminium foil. The beam intensity is 
varied by a factor of two, and no significant variation with intensity is observed.

measurements with superposed power on the block heater. This test has 
been done twice with aluminium and twice with copper. When the known 
power is subtracted afterwards it is possible to evaluate the stopping power. 
The added power is chosen to have the same magnitude as that provided 
by the beam. These results, compared with others obtained without super
posed power, are given in table 1. Again no trend is seen, and we conclude 
that we measure the power ratio to within 0.1 °/0.

Table 1. The influence of superposing the beam with power on the block 
heater.

Target
Proton 
energy 
(MeV)

Relative energy loss (°/0)

without overlapping
power

with overlapping
power

Al 5.001 7.635 ±0.007 7.648 ±0.006
Al 5.504 6.421 ±0.004 6.422 ±0.003
Cu 6.008 12.435 ±0.010 12.413±0.011
Cu 6.512 10.763 ±0.008 10.780 ±0.008

B. Energy

In the measurements A E is obtained from Eo through (2.1). Stopping 
power formulas yield roughly A E « 1/L" (4.2). Thus it is possible and quite 
convenient in the following graphs and tables of A E (or dE/dx) versus 
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energy to assume the energy to be a precise number and to attribute to zl E 
twice the relative uncertainty in the actual measured value of Eo. An un
certainty of 0.1 °/0 in the energy determination will then give 0.2 °/0 for our 
stopping power.

The energy EQ is determined from the field in a 90° deflection magnet. 
The calibration tables were prepared for a magnet similar in design to the 
one being used here, (p, n) threshold reactions being utilized. It was assumed 
that the energy was known within an accuracy of 10 keV through the whole 
energy range. This yields a relative accuracy of 0.2 °/0 at 5 MeV giving an 
uncertainty in the stopping power of 0.4 °/0 at that energy. This was considered 
unsatisfactory compared with the other uncertainties involved in the method, 
and the following calibration programme was therefore carried out. The 
particles were elastically back-scattered from a thin, heavy-mass target into 
a heavy-particle spectrograph. The spectrograph was calibrated using a- 
particles of known energy. The reproducibility of measurements made with 
different magnetic fields in the spectrograph indicates that it is possible to 
bring the uncertainty in the energy calibration down by a factor of two, to 
0.1 °/0, by this procedure. As will be seen below this is still our main source 
of uncertainty, and improved calibration methods are under investigation.

The energy defined by the analysing magnet is, however, not the energy 
of the particles hitting the foil. Six meters in front of the cryostat are placed 
a number of 150 pg/cm2 gold foils, which may be inserted into the beam. 
The particles undergo multiple scattering in these foils, and the beam is 
thus spread out, ensuring a homogeneous irradiation of the target foil. 
Furthermore, the particles pass through 150 pg/cm2 gold windows in the 
nitrogen and helium temperature radiation shields. The energy loss suffered 
in all foils will never exceeded 0.5 °/0. The resulting energy degradation may 
be calculated accurately enough not to affect our accuracy.

Particles scattered from collimator edges will have a lower energy than 
the rest of the beam and will cause the measured stopping powers to be too 
high. This possibility was tested by varying the number of multiple scattering 
foils. Inserting more foils will cause a greater relative number of the particles 
to hit collimator edges and thus give an apparent rise in stopping power 
greater than the trivial one caused by the change in mean energy. This 
anomalous rise had a mean value of 0.05 °/0 in nine experiments with 10-12 
MeV deuterons. In each test a measurement was done with 1, 3 and 4 scat
tering foils, where 3 or 4 are usually used. It was concluded that this is not 
an appreciable error source and that the total uncertainty in the energy is 
the calibration error being 0.1 °/0.
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C. Foil Thickness

When we know the energy loss, the stopping power is given by

where £'(< Eo~) is defined in part III, and t is the foil thickness. The thick
ness is determined in the following way. A piece, 6 x 13 mm, is cut from 
the foil with a very accurately machined punching tool. Care is taken to 
ensure that it is the same part of the foil as that irradiated during the energy 
loss measurements. The area of this piece, and of the hole left in the foil, 
is measured in a Zeiss Abbe comparator. The mean value is taken as the 
area, and half the difference as the uncertainty of the area measurement. 
The weight of the piece is found with a Cahn electrobalance. The total error 
in the weight per area determination is estimated to be 0.1-0.15 °/0. In this 
way we have determined the mean thickness of the same part of the foil 
as that over which the mean energy loss was measured. For a completely 
uniform irradiation of this area thickness inhomogeneities of the foil will 
have very small influence, and one of the main errors in stopping power 
experiments is thus eliminated. In practice, the number of scattering foils 
is chosen so that the intensity is not more than 10 °/0 lower at the edges than 
at the center. Errors due to inhomogeneities will, nevertheless, at least be 
reduced by a factor of twenty and are insignificant.

The foil is aligned optically to be perpendicular to the beam direction 
within 2 degrees. We have checked that the foil does not turn or bend while 
being cooled. Furthermore, the foils contract during cooling, the change in 
weight/area being twice the linear thermal expansion between 4.2 K and 
room temperature. The correction is less than 1 °/0 for most metals. Con
densation on the target during the measurement can change the apparent 
thickness in accelerator experiments, especially with cold targets. In our 
experiment, condensation is not a serious problem because there exists no 
direct path from the accelerator to the target, and an eventual condensation 
will take place on the radiation shields and gold windows rather than on 
the target. Nevertheless, there is sometimes found a small drift which may 
be detected over long measuring periods. The drift is attributed to condensa
tion of hydrogen or deuterium originating from the ion source. These partic
les will not condense on the nitrogen shield and only partially on the helium 
one. The maximum drift found corresponds to about 10 ,ug aluminium/cm2 
in 12 hours or about 0.2 /zg/cm2/hour of hydrogen.
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III. Data Treatment

As mentioned in section II. A, the raw data consist of the power calibra
tions and the recorder strips showing the off-balance signals from the Wheat
stone bridges. The recordings arc scanned by eye to obtain corresponding 
points for the foil and the block. Usually there are no difficulties, but care 
must be taken to ensure that the systems are in thermal equilibrium at the 
chosen points. From these pairs of signals corresponding pairs (Rf, Rb) for 
the resistance of the thermometers are found, and using the power calibra
tions the sets of corresponding powers (Pf, Pb) are calculated. Equation 
(2.1) is utilized to calculate the energy loss for each point evaluated. For each 
energy 15-20 points are used, and the mean value is found together with the 
standard deviation. There are, apart from this, some systematic errors in
volved, since any errors in the calibrations are smoothed out and do not 
show up fully in the fluctuations. Usually the total standard error is below 
0.1 °/0 of the mean value (see fig. 3). The entire procedure is very simple, 
but the numerical work involved is great and has therefore been coded for 
the GIER computer at Risø.

Equation (2.2) gives the stopping power S(E'), which we attribute to 
the energy E'. To first order in d E/E we have

An expansion of S(E') in powers of A E/E gives a quadratic correction
term

A _ EW _ Vi
S 12s/

(3.2)

where S = S(E'Y S' - and S" = (both at E'). Using the nonrclativ- 
dE dE*

istic form of the Rethe formula (4.1) and neglecting shell corrections we find 

(3.3)

where m is the electron mass, v the velocity of the projectile and I the mean 
ionization potential for the target material (see part IV). As the relative 
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energy loss never exceeds 2O°/o this correction is always smaller than 
0.05°/0 and is omitted. These results are not identical with those given by 
Andersen (1965) (p. 35), the latter being wrong due to a calculation error.

A further assumption entering (2.2) is that the trajectory of the projectile 
through the target is a straight line perpendicular to the foil. This is not 
the case. Every particle will be Coulomb-scattered through small angles a 
number of times (multiple scattering). This broadens the angular distribu
tion of the beam as it penetrates into the foil, and the mean distance the 
particles travel through the foil is thus slightly greater than the foil thickness. 
Also a small number of particles will be Coulomb-scattered through wide 
angles and lose nearly all their energy in the foil. Corrections due to these 
effects are of minor importance for aluminium except for the very thickest 
targets used, but the corrections are appreciable for heavy targets. The 
calculation of the corrections is outlined in appendix A and more detailed 
calculations have been presented by Andersen (1965).

The characteristic angle which separates the two cases is

ne Z

where N is the concentration of target atoms, e is the electronic charge, and 
Z the atomic number of the target. The relative correction due to multiple 
scattering is then (see e.g. Bethe and Ashkin (1953))

(3.5)

A is the atomic mass of the target and /' is a slowly varying function nearly 
equal to two. The correction is of no importance in aluminium, but will, 
as an example, be O.18°/o for gold with t = 20 mg/cm2 and E' = 5 MeV.

The single scattering term is of more importance. Again, using (3.4) 
this contribution is

(3.6)

This term will exceed 0.1 °/0 for the thickest Al target used (22 mg/cm2). 
For the above-mentioned case in gold it will be about 0.3°/0. The Coulomb 
corrections are roughly proportional lo t, Z and E-2. If the method is ex
tended to other energy regions than those used here, and if one wants the 
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same relative energy loss as in the present measurements, the thickness 
must be changed proportionally to E2. The importance of Coulomb correc
tions will thus be roughly the same in all energy regions, but for a fixed 
foil it will be most important for the lowest energy used.

Also the possible influence of the crystal lattice on the results has to be 
considered. A number of authors have recently found that the stopping 
power for high-energy particles is lowered appreciably when they move 
in open directions of the crystal lattice. (Dearnaley, 1964; Dearnaley and 
Sattler, 1964, 1965; Erginsoy et al., 1964, and Datz et al., 1965). It may, 
however, be shown theoretically that this will not influence the slopping 
power of a polycrystalline sample (Lindhard, 1965). There is still the 
possibility that our samples, which are cut from rolled foils, have a strong 
crystalline texture, and that some preferred low-indexed crystalline direc
tion accidentally coincide with the beam direction. Whether this is the case 
or not may be tested experimentally. The concept involved is the following: 
If a particle hits the foil in a direction which coincides with a low-indexed 
direction within a certain critical angle, it will be trapped in regions with 
lower stopping power than the mean value for the material. These critical 
angles are, in heavy targets, of the order of 0.1° for the energies involved here. 
In aluminium they will be appreciably smaller (see Lindhard 1964, 1965). 
They depend only on the energy and charge of the particle, not on its mass, 
i.e. they are the same for protons and deuterons having the same energy. 
The critical angles decrease with increasing energy. The foil is not Hat 
within better than 1°, and the total area of the foil perpendicular to the beam 
direction within the critical angle will thus also decrease with increasing 
energy. This decrease goes as E~x for trapping along low-indexed directions 
(the so-called string effect) and as E~x!2 for trapping between planes. As is 
shown below (5.1), protons and deuterons with the same velocity have the 
same stopping power in an amorphous material, but the deuterons have, 
in this case, twice the energy of the protons, and the possible influence of 
a crystal lattice will thus be smaller for the deuterons. We may now compare 
the measured stopping powers of protons and deuterons with the same 
velocity. If the deuteron stopping powers are not higher, the crystal lattice 
has no measurable influence.

Apart from the corrections discussed previously, which have to be 
applied for all stopping power experiments, there also occur some correc
tions which are rather specific for the measuring technique used here. We 
have, until now, assumed that all energy dissipated by the particles in the 
foil and the block will appear as heat. There is a number of processes 
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which can occur so that this assumption is not entirely true. The corrections 
due to this have been discussed in detail by Andersen (1965). We will here 
summarize the results. The important steps in the calculation of the signi
ficant corrections are given in Appendix B.

A certain part of the energy given to the foil may escape through x-rays. 
A number of processes are competing. One must first calculate the fraction 
of the energy loss stored in vacancies in inner electron shells. Some of these 
vacancies are filled in such a way that the liberated energy appears as an 
Auger-electron and not as an x-ray quantum. The so-called fluorescence 
yield is the relative number of vacancies in a given shell filled under emission 
of x-rays. This yield is very low for low Z and for outer shells. Furthermore 
some of the x-rays will be reabsorbed in the foil. The product of these factors 
determines the correction. It is insignificant for light elements, but the cor
rections may be as high as 0.4 °/0 for thin targets of heavy elements. The 
evaluation is summarized in Appendix B.

Furthermore, nuclear reactions in the foil and the block will give errors. 
They are insignificant in our energy range. If we assume the cross-sections 
to stay roughly constant when the projectile energy is high enough to pene
trate the Coulomb barrier, the contribution from these processes will be 
proportional to the foil thickness and to the particle range in the block. As 
the range is approximately proportional to E2, the contribution from nuclear 
reactions in the block will also increase in proportion to E2. The errors 
introduced may be calculated for some elements, but will in all cases be a 
significant and not too well known correction at high energies.

The usual secondary electron spectrum will have a vanishing influence, 
but some electrons might get high energies (d-rays) and introduce an error. 
It is a surface effect and nearly proportional to E'. (For details see Appendix 
B). When the proton energy varies from 5 to 12 MeV, the error in the meas
ured energy loss will vary from 500 to 1000 eV. For thin foils and high 
energies the relative correction will be as high as 0.5 °/0. The variation with 
Z is small. Assuming the usual variation of foil thickness for other energy 
ranges, the importance will decrease as we go to higher energy ranges.

Finally, we have considered the problems of sputtering of foil atoms 
and of energy stored in point defects in the block. Both are related to the 
elastic energy transfer to target atoms and are negligible. The effect might 
be of importance at lower energies.
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IV. Outline of Theory

We will give a compressed summary of the theory for stopping power 
in the energy region of interest here. We are primarily interested in using 
the theory to find a convenient way of presenting our measured data. An 
up-to-date review of the present state of the theory has been given by Fano 
(1963). The theory originating from Bethe yields

dE
dx

4jre4z2 AT0Z 
mc2ß2 A

-ß2- Inf -
Z

(4.1)

where x is the foil thickness measured in grams/cm2, No is Avogadro’s 
number, and A is the atomic weight of stopping material in grams, z is the 
charge of the projectile with velocity v = ßc, Z is the atomic number of the 
target, and I its mean ionization potential. Ct represents the so-called shell 
corrections. They are deviations from the simple theory and have been 
evaluated for the K- and the L-shell by Walske (1952 and 1956). The main 
theoretical interest lies in the calculation of the inner shell corrections from 
the measurements, their comparison to the Walske theory, and the possible 
experimental evaluation of outer shell corrections for which no theoretical 
predictions exist.

W e see from (4.1) that for a given combination of projectile and target 
we may write

(4.2)

where a and b are energy-independent constants and shell corrections and 
relativistic effects are neglected. We see then that variation of the energy 
by a factor of two will also cause dE/dx to vary nearly by the same factor. 
It is thus not possible to represent our dB/dx-values for the whole energy 
range in a plot, where we at the same time may see the fluctuations. The 
most obvious thing to do would be to plot E-dE/dx rather than dE/dx, but 
this is still not sufficient. We have therefore chosen to use the reduced vari
able given by Bichsel (1964). If we define

K(ß) = 47ie4N0/mc2ß2 (4-3)
and

f(ß) - ln(2mcV2/(l - ß2)) - £2 (4-4)
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we will compute
A

(4.5)

This is in fact an experimental determination of \nl + XCJZ in eq. (4.1). 
Theoretically, the shell corrections are found to be positive in our energy 
range. At very high energies they are zero, and X will then be energy inde
pendent and equal to InZ.

V. Results and Discussion

Results will be presented here for measurements with 5-12 MeV protons 
and deuterons in aluminium. The samples were cut from rolled foils supplied 
by the United Mineral and Chemical Co., Inc. The purity of the samples 
as stated by this company was 99.999%. No corrections for impurities were 
thus necessary. Measurements have been made on samples with approximate 
thicknesses of 6, 11, and 22 mg/cm2. The thinnest sample is thick enough that 
no correction is necessary for the unavoidable oxide layer on the aluminium 
surfaces. The relative energy loss varied from 2 °/0 at high energies in thin 
foils lo 16 % at low energies in thick foils.

The results are presented in lig. 4 in the X-variable defined by eq. (4.5). 
Note that dEfdx is negative. Thus higher values of A mean numerically 
lower values for the stopping power. At both ends of the figure is indicated the 
change, a 1 % change in dE/dx would give in X at that energy. Both proton 
and deuteron measurements are shown in the reduced energy scale E- M IM, 
where M is the mass of the projectile and Mp the proton mass. The deuteron 
values are therefore indicated at the energy which a proton would have if its 
velocity were equal to that of the deuteron. The figure contains points measured 
over a long period of time. During this time significant changes occurred in the 
energy calibration of the accelerator, and the scatter in the points will there
fore reflect the total uncertainty for each point including the calibration 
uncertainty in Eo. A smooth curve has been fitted by eye through the measured 
points. The values defined by this curve are listed in table 2. Combination of 
the errors listed in the preceeding paragraphs yields a total standard devia
tion in the tabulated values of 0.3%. As judged from fig. 4 this does not 
seem to be too optimistic.

It is seen that the proton and deuteron points do not fall together as 
theory predicts that they should (part IV); we must, however, remember 
that the proton and the deuteron energy calibrations are made independently
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Figure 4. Measured stopping powers for aluminium in reduced variables defined by eq. (4.5). The 
height of the arrows indicates the change in X caused by a 1 °/0 change in dE/dx. Open circles are 
measurements by Nielsen (1961) and the broken line tabulated values by Bichsel (1963 b).

The full line is fitted to our experimental points by eye. —? = ratio between proton mass and 
A4

mass of incident particle.

of each other (part II. B), and, in comparing, the combined uncertainty of 
the two calibrations has to be taken into account. The deviation is found 
not to be significant. It is, furthermore, certainly not due to crystallographic 
effects (part III) as this wotdd introduce errors of the opposite sign.

There does not exist much other experimental information in this energy 
range with which it is possible to compare our results. The only relevant 
measurements are those of Nielsen (1961). Her points are shown as open 
circles. The results agree within her accuracy. It is also possible to compare 
our results with the tabulated values given by Biciisel (1963b). They are 
obtained by fitting the total amount of available data for aluminium, up to 
that time, to the expression (4.1 )-including shell corrections. The fit is 
claimed to be good to 1 °/0, and the agreement is seen to be better than that. 
A very extensive table has also recently been published by Barkas and 
Berger (1964). The overall agreement with these tables is only good to 
about 2°/0. Within the energies contained in fig. 4, the X-values computed

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 4. 2
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Table 2. Smoothed values of measured stopping powers for protons in 
aluminium obtained from the full line in fig. 4.

Experimental standard error ±O.3°/o

Energy
MeV

— dE/dx 
keV/mg cm-2

Energy
MeV

- dE/dx 
keV/mg cm-2

2.25 101.92 5.75 51.93
2.50 94.68 6.00 50.31
2.75 88.52 6.50 47.38
3.00 83.19 7.00 44.81
3.25 78.56 7.50 42.52
3.50 74.51 8.00 40.47
3.75 70.94 8.50 38.64
4.00 67.76 9.00 36.97
4.25 64.85 9.50 35.46
4.50 62.21 10.00 34.08
4.75 59.80 10.50 32.82
5.00 57.59 11.00 31.66
5.25 55.56 11.50 30.58
5.50 53.68 12.00 29.58

from their tables show such large fluctuations that they could not be con
tained in the figure.

We conclude that the accuracy of the tabulated data is within 0.3 °/0, 
and that the data agree with existing stopping power and range results 
within their estimated errors.
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Appendix A
Coulomb Scattering in the Foil

The projectiles will have a longer path than the foil thickness because 
they are Coulomb-scattered by the target atoms. All particles undergo many 
small-angle scatterings while passing through the foil causing the beam to 
be gradually spread out, and a few particles are scattered through large 
angles thus travelling very much longer paths in the foil.

To be able to treat these two cases separately, we define an angle 
given by

71

Nt $a(0)d0 =1 (Al)

0i

where u(0) is the differential Rutherford scattering cross section, i.e. 0r is 
defined in such a way that particles passing through the foil will, in the mean, 
be scattered once through an angle 01 or greater. We obtain

0? = Nt
4 v2 Tie Z

E2
(A 2)

by assuming 0X « 1 and substituting Z for Z+ 1. Scattering through angles 
smaller than 0T is treated using multiple scattering theory and scattering 
through angles greater than 01 by use of the Rutherford cross section.

If the beam has a mean square angular deviation 02 from the normal, 
the relative correction to the energy loss will be

d(ZlE) <02>
AE ~ 2 02« 1. (A3)

Bethe and Ashkin (1953, p. 285) calculate 02 to be

(A4)

where 0min is a minimum scattering angle given by the screening of the 
Coulomb interaction. This yields

zZ2/3ä\ 
(A 5)

2*
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(A 6)

(A 7)
o

Performing the integration (A 6) we find

(A 8)

and

E'c(E0,x)

x (A 9)

c2

8 c2

If the particles were not scattered, they would leave the foil with energy 
,r), and the correction is

t

provided <02>» 02» 0^in./’varies from 1.8 to 2.2 for all materials and 
thicknesses of interest to us.

To calculate the single-scattering correction the following model is as
sumed. The particles penetrate the foil with a constant energy Eo to the 
point, where they are scattered. From this point they are assumed to lose 
energy at a rate given by the relation /? = c2-E2 where /? is the range of 
a particle with energy E and c2 is an energy-independent constant, de
pending on projectile and target. This is a fairly good approximation cor
responding to dE/dx « l/E. The constant c2 is eliminated from the final 
result.

We first calculate the energy of particles scattered in a thin layer dx 
situated the distance x beneath the back of the foil, E'(E0, 0, x). The total 
energy of all particles scattered through angles greater than leaving the 
foil will then be

71

E'(E0,x)dx = dx E'(Eo,0,x)a( 0)dG.
0!

E2 +X~f
Co
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EA refers to particles leaving the back of the foil, and Ec to those leaving 
the front. cx is the angularly independent factor in the Rutherford cross 
section. The integration (A 7) is carried through to second order in AE/E0. 
The relative single scattering correction is then found to be

(A 10)

Further details are given by Andersen (1965).

Appendix B
Corrections Due to x-Rays and <î-Rays

Neglecting relativistic effects, (4.1) is written in the form

where

(Bl)

(B 2)

The contributions have been split up for the different shells. is the number 
of electrons in the zth shell, and It the ionization potential for this shell. 
Where necessary, the corrections due to Walske (1952, 1956) to (B 2) have 
been used. The fraction of the total energy loss due to the z'th shell is then

(B 3)

Some of this energy goes into kinetic energy of the expelled electron. If the 
fraction not doing so is ft, the total energy stored in vacancies in the zth 
shell will be Ei-fi. Due to the Auger effect only a fraction cot of this will 
appear as x-rays, and the total correction due to x-rays from the zth shell 
and from a very thin foil is then

(B4)
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Figure 5. Energy being emitted as <3-rays from an aluminium foil traversed by a proton of 
energy Ep as calculated from (B 8).

This has a maximum for the K-shell of aluminium in our energy range of 
about 0.2%. For the L-shell in some of the heavier elements it might rise 
to 1.5%. Fortunately a good many of the x-rays are reabsorbed in the foil. 
If the absorption coefficient for a particular group of x-rays is //, the self
absorption is a function only of the dimensionless quantity a = /j, • t. The 
fraction escaping is

F(u) = I
1
a

e
- + e a + uEi(- tz) 

a
(B 5)

where Ei(a) is the Eire-function. This will usually reduce the correction 
by at least a factor of 3.

The d-rays are energetic electrons emitted mainly in the forward direc
tion. The electrons in the material are assumed to be free, and the energy 
distribution of the electrons is calculated by the Rutherford cross section, 
i.e. classically.

The probability that a single charged particle with velocity v will eject 
an electron with an energy in the interval Q to Q + dQ from a slab with 
thickness dx is then

(B 6)

These electrons are assumed to lose energy at a rate governed by a relation 
R = c2-E2 as in appendix A. If the slab is situated the distance x beneath 
the surface, the energy leaving the surface from this slab will be
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I'm

E(x)dx-k ■ dx \ l[/0* - X- j/ ^" rfQ <B 7>

where Tm is the maximum possible energy transfer. The total correction 
is then

Tm
C NQZ n e4Må(E) - J E(x)dx = • ca • —-/'(E) (B 8)

0 0

where f(E) is a function only dependent on E, which has been found by 
numerical integration. The result for aluminium is shown in fig. 5.
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